Peer-reviewed articles
Santino, L. M., … Cui, J. Untitled Project. 2024, in review.
Wang, H., Santino, L. M., Rubin, M., Diao, Y., Lu, Y., & D'Arcy, J. M. Self-woven nanofibrillar PEDOT mats for impact-resistant supercapacitors. Sustainable Energy & Fuels 2019, 10.1039/C8SE00591E, cover article.
Lu, Y.; Kacica, C.; Bansal, S.; Santino, L. M.; Acharya, S.; Hu, J.; Izima, C.; Chrulski, K.; Diao, Y.; Wang, H.; Yang, H.; Biswas, P.; Schaefer, J.; D'Arcy, J. M. Synthesis of Submicron PEDOT Particles of High Electrical Conductivity via Continuous Aerosol Vapor Polymerization. ACS Appl. Mater. Interfaces 2019, 10.1021/acsami.9b15625.
Santino, L. M.; Diao, Y.; Yang, H.; Lu, Y.; Wang, H.; Hwang, E.; D’Arcy, J. M. Vapor/liquid Polymerization of Ultraporous Transparent and Capacitive Polypyrrole Nanonets. Nanoscale 2019, 10.1039/C9NR02771H.
Diao, Y.; Chen, H.; Lu, Y.; Santino, L. M.; Wang, H.; D’Arcy, J. M. Converting Rust to PEDOT Nanofibers for Supercapacitors. ACS Appl. Energy Mater. 2019, 10.1021/acsaem.9b00244.
Wang, H.; Diao, Y.; Rubin, M.; Santino, L. M.; Lu, Y.; D’Arcy, J. M. Metal Oxide-Assisted PEDOT Nanostructures via Hydrolysis-Assisted Vapor-Phase Polymerization for Energy Storage. ACS Appl. Nano Mater. 2018, 10.1021/acsanm.7b00382, cover article.
Santino, L. M.; Hwang, E.; Diao, Y.; Lu, Y.; Wang, H.; Jiang, Q.; Singamaneni, S.; D’Arcy, J. M. Condensing Vapor Phase Polymerization (CVPP) of Electrochemically Capacitive and Stable Polypyrrole Microtubes. ACS Appl. Mater. Interfaces 2017, 10.1021/acsami.7b13874.
Lu, Y.‡; Santino, L. M.‡; Acharya, S.; Anandarajah, Hari; D’Arcy, J. M. Studying Electrical Conductivity Using a 3D Printed 4-Point Probe Station. J. Chem. Educ. 2017, 10.1021/acs.jchemed.7b00119.
Acharya, S.; Santino, L. M.; Lu, Yang; Anandarajah, H.; Wayne, A.; D’Arcy, J. M. Ultrahigh stability of high-power nanofibrillar PEDOT supercapacitors. Sustainable Energy & Fuels 2017, 10.1039/C7SE00057J, back cover.
Santino, L. M.; Acharya, S.; D’Arcy, J. M. Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. J. Mater. Chem. A 2017, 10.1039/C7TA00369B.
Santino, L. M.; Lu, Y.; Acharya, S.; Bloom, L.; Cotton, D.; Wayne, A.; D’Arcy, J. M. Enhancing Cycling Stability of Aqueous Polyaniline Electrochemical Capacitors. ACS Appl. Mater. Interfaces 2016, 10.1021/acsami.6b09779.
‡Equally contributing authors.
Reviews, perspectives, and book chapters
Santino, L. M.; Lu, Y.; Diao, Y.; Wang, H.; D’Arcy, J. M. Conducting Polymers for Electrochemical Capacitors. In Handbook of Conducting Polymers, Reynolds, J.; Thompson, B. C.; Skotheim, T. A., Eds. CRC Press: Boca Raton, FL, 2019, pp. 561. ISBN 9781138065703.
Bryan, A. M.‡; Santino, L. M.‡; Lu, Y.; Acharya, S.; D’Arcy, J. M. Conducting Polymers for Pseudocapacitive Energy Storage. Chem. Mater. 2016, 10.1021/acs.chemmater.6b01762, cover article.
‡Equally contributing authors.
Dissertation
Luciano M. Santino
"Self-Assembly of Conducting Polymer Nano- and Microstructures for Energy Storage"
Arts & Sciences Electronic Theses and Dissertations. 2019, 10.7936/253x-jp92.
ABSTRACT:
Plastics are materials composed of many long chains of molecules with repeating subunits; strong interactions between neighboring molecules lead to the material used throughout the world. Plastics are commonly thought to be insulating, in stark contrast to the conductivity of metals. However, certain polymer structures were discovered to exhibit semiconducting properties, the subject of the Nobel Prize in Chemistry in 2000. Conducting polymers have a unique molecular structure with an electronically conjugated backbone, allowing electrons to freely travel both across the chain and in between chains. This work focuses on controlling the kinetics of the reaction between the vapors of an aromatic heterocycle pyrrole and aqueous iron(III) containing oxidants. With the methods introduced in this dissertation, the conducting polymer polypyrrole is formed with great control of molecular structure, allowing for the fine-tuning of properties like conductivity. Unique interactions during synthesis lead to the controlled deposition of polypyrrole nano- and microstructures, including fibers, tubes, webs, and thin films. These unique structures of polypyrrole are then analyzed for their performance as usable electronic materials, including transparent and flexible conductors as well as electrode materials for electrochemical energy storage devices.